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Current knowledge in the subject of the theoretical mechanical behaviour of perfect 
single crystals under load is reviewed. Examples of computations of load, lattice 
deformation, elastic moduli, and elastic stability are discussed, and qualitatively 
interesting (and sometimes surprising) phenomena are noted. Although computational 
techniques are reviewed briefly, the emphasis is upon the collation and interpretation of 
various computational resu Its that have appeared in the literature. Special consideration 
is given to the topics of lattice stability and the definition and computation of elastic 
moduli of crystals under load, as well as branching from one path of deformation to 
another under a prescribed mode of loading. Possible applications in materials science 
include deformation of whiskers, twinning, martensitic transformations, very rapid 
shock deformation, powder technology and size reduction, and mechanical properties 
of small structures such as metallized integrated circuits. 

1, Introduction 
This article reviews current knowledge in the 
subject of the theoretical mechanical bahaviour of 
perfect single crystals under load. Applications of 
particular interest are to systems in which large, 
elastic (but not necessarily linear) deformation 
may occur, i.e. in cases where large deformations 
may occur either without significant dislocation 
movement or before deformation by dislocation 
movement becomes dominant. Relevant examples 
may include (i) deformation of whiskers, (ii) twin- 
ning, Off) martensitic transformations, (iv) very 
rapid shock deformation (e.g. if the rate of defor- 
mation is greater than the dislocation velocity), 
(v) powder technology and size reduction (e.g. the 
"theoretical strength" of solids forms a basis for 
calculating the efficiency of grinding processes 
[1 ]), and (vi) perhaps even mechanical properties 
of small structures such as metallized integrated 
circuit structures (presuming that regions relatively 
free of defects can occur). 

According to Hill [2], "Single crystals free from 
lattice imperfections are used increasingly as 
micro-structural components. Perfect crystals are 
capable of elastic strains well beyond what can 
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properly be treated as infinitesimal. Their response 
to general loading is virtually unknown and is 
doubtless complex, so experimentation will have 
to be conducted within some plausible theoretical 
framework". As an important step towards the 
development of such a theoretical framework, 
exploratory calculations have been made of the 
theoretical response, of relatively simple crystal 
models, to a variety of different modes of "large 
strain" loading. Results of such calculations, as are 
reviewed here, have exhibited a variety of interest- 
ing behaviours and thereby have provided insights 
into the nature of possible phenomena during 
homogeneous, large strain deformation of crystals. 
Possible modes of phase transformations have been 
suggested, and it has been demonstrated that com- 
putations of lattice behaviour at large strain can 
yield greater understanding of the bases for certain 
aspects of crystal elasticity in the reference, 
unloaded states [3]. These initial results also sug- 
gest that there remains much to be learned from 
future calculations, based upon relatively simple 
crystal models, for other modes of loading not yet 
fully explored. 

An important consideration, relating to the 
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theoretical response of a crystal lattice to loading, 
is that of  the "stability" of the loaded crystal and 
the nature of possible branching (from a primary 
path of deformation) associated with loss or 
exchange of stability. The problem of determining 
the stability limits (or the theoretical or ideal 
strength) of  a perfect crystal is of fundamental 
interest because it is thought that the strengths of  
some metallic whiskers or fine filaments approach 
the theoretical limit. The problem is also relevant 
to our understanding of many phenomena occur- 
ring in the solid state; it plays an important role in 
determining the stress distribution near the tip of a 
crack and thus in determining whether a material 
will exhibit brittle or ductile behaviour [4, 5]. The 
def'mition of dislocation core radii [6, 7] and the 
loss of coherency occurring at particle-matrix inter- 
faces [8-10] are also problems which involve large 
strain elasticity and the ideal strengths of  crystals. 

Macmillan [11] has given a comprehensive 
review on theoretical strengths of ideal crystals, 
including stability under load. However, since the 
appearance of Macmillan's review article, recent 
work hy Hill [2], Hill and Milstein [12], and 
Milstein and Hill [13-15] has led to major revisions 
in the methadology and principles of the assess- 
ment of crystal stability under load; in discussing 
theoretical crystal strength, the emphasis in the 
present review is thus on this more recent work. 

2. General characteristics of various modes 
of loading 

2.1. Qualitative features 
As an example of  the variety of phenomena and 
complexity of  crystal response for a prescribed 
path of loading, we begin by mentioning some 
results of Huang etal.[16]. They computed the 
theoretical load-deformation behaviour of an 
initially f c c crystal subjected to shearing forces 
wherein the lattice parameters where unconstrained 
(i.e. as the crystal was deformed, all lattice par- 
ameters were varied in such a manner that the 
load remained parallel to the (10 0) planes and in. 
the [010] direction* and that no other loading 
but this shear loading was present). This study was 
the first theoretical study of the unconstrained 
response of a crystal to such shear loading. Calcu- 
lations were made of shear angle 0, lattice par- 
ameters, shear forces and stresses, and elastic 
moduli along the loading path. As a consequence 
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Figure 1 Side view of the fcc unit cell in the initial, 
unloaded fcc state (left) and under the applied shearing 
forces (right). For the prescribed state of loading, the 
value of 0 could not be decreased beyond "~ 82.4 ~ with- 
out the necessity of a first order lattice discontinuity. 

of  the fact that the calculations were for an 
"unconstrained" lattice, several unexpected results 
were obtained. For example, the shear angle 0 
(between the [10 0] and [010] directions), as well 
as all other lattice parameters, could be varied 
continuously up to a maximum critical variation 
occurring at 2x0 ~ 7.6~ further continuous vari- 
ation of 0 required a first order transition (i.e. a 
discontinuity in the other lattice parameters) 
since a continuous path taking A0 beyond ~ 7.6 ~ 
did not exist! (There did exist a continuous path 
taking A0 back to 0 ~ transforming the initial f c c 
structure into a b c c structure, and passing through 
a stress-free tetragonal structure on the way.) The 
crystal loading is indicated schematically in Fig. 1. 
The applied shear stress and internal energy versus 
0 are shown in Figs. 2 and 3. The crystal is initially 
in the unstressed f c c state A; a maximum stress is 
reached near C; the continuous path taking A0 
back to 0 ~ (or 0 back to 90 ~ ) is indicated as 
CDEFG, where E is the stress-free tetragonal state 
and G is the unstressed b c c state; the continuous 
increase in 40 (or decrease in 0) beyond state D, 
while preserving the mode of loading, required the 
"discontinuous jump" from state D to state X. 
The computational techniques are reviewed briefly 
in what follows; for more detailed information, 
the reader is referred to the original literature. 

In order to carry out actual calculations of  load, 
strain, and elastic moduli, a crystal model is 
required whereby the internal energy W per atom 
or per unit cell can be expressed or calculated as a 
function of geometric variables qr that define the 
state of homogeneous strain of the crystal: 

W--- W ( q l , q 2 , . . . , q 6 ) .  (1) 

The most widely used approximation has been to 

*The usual Miller index is employed. Thus in this example, the load is parallel to a "cube" face and to a "cube" edge 
of the (initially cubic) unit cell. 
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compute 2W by summing, over some 103 volume 
units of deformed crystal, the pairwise interaction 
energies associated with "bonds" on the represen- 
tative atoms in one cell. Metals whose electronic 
structures are not too complex have been modelled 
by adding a volume-dependent contribution to the 
interionic energies [17]. In principle, one could 
also employ more sophisticated, mathematically 
complicated, rigorous (from a quantum mechanics 
viewpoint) crystal models, although at the present 
stage of development, it appears that much more 
can be learned from studies based upon the 
simpler, classical model of a crystal. It will, of 
course, be of great interest to "verify" some of the 
"classical" results using more sophisticated quan- 
tum models of crystals and particularly to perform 
computations with non-central forces so that 
Cauchy symmetry is not present. Work along 
these lines has been initiated by a group at Harvard 
University [ 18 ], where a first principles calculation 
of theoretical "tensile" stress of copper was 
recently made. (Actually the computations were 
for uniaxial elongation in a [100] direction and 
hence the state of loading was triaxial, such that 
the stresses in [010] and [001] were equal and 
apparently in tension.) From the viewpoint of 
assessing the validity of the various computations, 
it is satisfying to note that their theoretical results 
are in good agreement with analogous compu- 
tations performed using the simpler central force. 
Morse model of a copper crystal [39]. 

In the pioneering work of Born and co-workers 
[19-25], the potential energy 0(r) between two 
atoms (in a crystal) separated by a distance r was 
taken to be of the "inverse power" or "Mie" 
form i.e. 

n - - m  tn \ r /  m \ r ]  ] 

where n > m .  dO~dr vanishes for r = r o ;  
0(r0) = - - D ,  the dissociation energy for a given 
pairwise "bond"; and D, n, rn, and r o are empirical 
potential parameters determined from the experi- 
mental crystal properties (e.g. lattice parameter, 
compressibility, cohesive energy, etc., of the actual 
crystal). The particular case of m = 6, n = 12 is 
the "well known" Lennard-Jones function. 

Born and co-workers used this model to study 
unloaded crystals with cubic [20] and rhombo- 
hedral [25] internal symmetry and loaded face 
centred crystals (initially cubic) subjected to 
[100] or "cube edge" uniaxial loading [21] and 

hydrostatic tension and compression [23,24]. 
In the absence of electronic computers, the numeri- 
cal techniques for determining the required lattice 
summations were complicated and tedious [20-  
25]. This apparently is the reason why Born and 
Fiirth limited their non-hydrostatic loading studies 
[21] to one example only, i.e. to the case of [10 0] 
uniaxial loading of an initially face centred cubic 
crystal with Lennard-Jones interatomic inter- 
actions. Nevertheless, the inverse power function, 
Equation 2, was the most mathematically tractable 
(among various types of two-body potential func- 
tions that could have been selected); although 
other functions, e.g. the Morse function, 

0(r) = D{exp [-- 2a(r--ro)] 

- - 2 e x p  [--a(r--ro)]}, (3) 

had certain inherent theoretical advantages (see, 
for example, Girifalco and Weizer [26, 27]). With 
the advent of electronic computers, however, 
lattice summations of exponential functions could 
readily be performed. This led Milstein [28] to 
suggest a generalization of the Morse function, i.e. 

D 
0(r) m -- 1 {exp [-- ma(r-- r0)] 

- -m exp [-- a ( r - -  ro)] }. (4) 

D, a, ro, and m are empirical parameters; d0/dr = 0 
at r = ro; and 0(to) = --D, the dissociation energy 
of two atoms. For the particular case of rn = 2, 
Equations 3 and 4 are identical. 

In [28], explicit functions 0(r), (Equation 4), 
were determined for a number of cubic crystals 
(from experimental values of the stress-free lattice 
parameter and elastic constants Cll and C12) and 
the applicability (and limitations) of such a model 
was discussed. Subsequent studies [3, 16, 29-31],  
of the response of a crystal to selected modes of 
loading, employed the particular set of functions 0 
that were determined for the element nickel (Ni) 
for the reasons that: (i) among the f c  c metals 
which were examined, Ni comes closest to obeying 
the Cauchy condition C12 = C44; (ii) reasonably 
good agreement was obtained between theoretical 
and experimental pressure-volume relations in the 
region of anharmonic (i.e. non-hnear) behaviour; 
(iii) the theoretical model exhibits a reasonably 
accurate stress-strain curve in the linear region 
(since experimental values of elastic moduli were 
used to determine the atomic parameters def'ming 

1073 



I0  

6 

g "  

%4 
v 

tff s 

~ 2  03 

0 

//x< / 
/ l 

a. t 

/o 
a 

' . . . .  8 . '~  8'~ 8' 3 

F 
o (DEG) 

= m=1.25 

�9 m = 2  

~ m = 6  

W 

Figure 2 Theoretical values of applied shear stress % cal- 
culated as a function of shear angle 0 for the state of load- 
ing shown in Fig. 1 [16]. 
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Figure 3 Internal energy W per unit fc cell (ie. per four 
atoms) versus shear angle O, corresponding to the shear 
stress shown in Fig. 2 [16]. 

~b). Included in this set of  functions q~ were both 
short-range, steep functions and long-range, shallow 
functions. For example, in the "steepest" potential 
4~ employed in the calculations (i.e. m = 1,25) 
about 92% of  the cohesive energy per atom in the 
crystal comes from nearest-neighbour interactions 
and less than 0.1% from, say, all of  the sixth- or 
seventh-near-neighbour interactions; whereas in the 
"shallowest" potential (m = 6), only about 51% of  
this cohesive energy can be attributed to nearest- 
neighbour interactions while as much as 3.1% 
comes from seventh-near neighbours. Nevertheless, 
the model was found to be self-consistent in the 
sense that the response o f  the crystal, even after 
very large strains, was found to be surprisingly 
insensitive to the details o f  the function q~ (assum- 
ing, of  course, that the same empirical data were 
used to specify each function 4~ in the set). For 
example, computations are shown in Fig. 2 for 
the cases m = 1.25, 2 and 6 in Equation 4. 

As an interesting side comment,  it is perhaps 
somewhat strange that the topic o f  the theoretical 
response of  ideal crystals to loading remained 
rather dormant for more than 20 years after the 
original work by Born and co-workers. The present 
author first became interested in this topic in 1967 

while he was a member of  a Mechanics and 
Materials Group at RAND Corporation, Santa 
Monica, California, where there was considerable 
discussion regarding the possibility of  using 
whiskers and fine filamentary single crystals as 
structural components. Milstein's initial studies 
were for [10 0] uniaxial loading (i.e. cube-edge 
loading) of  a body centred cubic lattice [32, 33] 
and face centred cubic lattices [29]. It soon 
became evident that for "large strain" loading, the 
path of  load or stress versus the lattice parameter 
a 1 parallel to the load was essentially the same for 
either lattice type when subjected to unconstrained 
[10 0] uniaxial loading (i.e. at any stage along the 
loading path, the transverse lattice parameters 
(a2---a3) are "adjusted" to ensure that the trans- 
verse loads are zero). The lattice structure is 
illustrated in Fig. 4, where it is readily seen that, 
under the prescribed loading programme, either a 
body centred tetragonal (b c t) or a face centred 
tetragonal (f c t) fundamental cell can be defined. 
It also then follows that the primary loading path 
passes through three zeros in general. That is, 
consider the f c c state to be stress free; under 
compresson of  the axial lattice parameter al,  the 
transverse f c lattice parameters (a2 = a3) increase; 
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Figure 4 Two fundamental cells of the face centred tet- 
ragonal lattice with specific lattice sites shown with 
"solid" centres to indicate that the structure can also be 
considered as body centred tetragona]. 

when the state a2 = ~/2a  x is reached, the body 
centred cell becomes cubic; since the transverse 
loads are zero, it follows from symmetry that the 
axial load is also zero in that  state. Since the load 
must be tensile as al  ~ = '  and compressive as 
al -+ 0, the existence o f  two zeros on the primary 
loading path also implies a third zero, in general 
(although it is possible for only two zeros to occur 
in a special case where the load is tangent to the 
abscissa at the b c c state). Typical curves [29, 32, 
33] of  load or stress versus lattice parameter al 
had the general appearance shown in Fig. 5. 
Generally, state c is at an energy minimum, b is at 
a local energy maximum, and a at a local minimum. 
The unstressed f c c state is at c. The unstressed 
b c c state was found at a for a lattice model o f  Fe 
[32, 33] and at b for  Ni [29] ; when the b c c state 
occurs at b it is unstable, since associated with a 
falling load characteristic, or equivalently a local 
maximum of  strain energy. Additional special 
states at d, f, and e,will be discussed shortly with 
relation to branching from the primary path under 
a programme of  uniaxial loading. 

With regard to the existence of  the stress-free 
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Figure 5 General behaviour of the load or stress versus 
axial lattice parameter for unconstrained [100] uniaxial 
loading of a body centred or face centred tretragonal lat- 
tice. State c is fcc (unstressed) and either state a or b is 
b c c (also unstressed). 

tetragonal configuration (located at b in [32] and 
[33] and at a in [29]), the lattice structure in this 
state apparently is a tetragonal Bravais lattice 
without any higher symmetry.  The same lattice 
configuration exists at E in Figs. 2 and 3. In pass- 
ing, it is interesting to note that Born and 
co-workers were apparently of  the opinion that 
the central force model o f  a crystal did not  exhibit 
a stress-free tetragonal equilibrium state. This 
opinion apparently was based upon their study 
[21] of  [100] uniaxial loading of a face centred 
cubic crystal and their additional calculations for 
unloaded rhombohedral  lattices [25]. For example, 
in listing the significant results o f  his group's 
investigations of  the behaviour of  central force 
lattices, Born [34] includes the "result that 
tetragonal (non-cubic) Bravais lattices are not 
equilibrium configurations". However, apparently 
Born and Fiirth wouM have seen the "equilibrium" 
(i.e. unstressed) tetragonal Bravais lattice under 
greater [1 00]  lattice contraction; indeed, their 
theoretical load versus deformation curve did 
exhibit a minimum in compression (which, 
strangely, went unremarked). 

Similar responses with triple zeros were noted 
for other uniaxial loadings. For the lattice model 
o f  nickel under [1 1 0] (i.e. face diagonal) load, 
Milstein and Huang [30] found the unstressed 
tetragonal state between two f c c states (equiv- 
alent but oriented differently). This behaviour is 
associated with a "branching" of the [1 00]  a n d  
[110] paths, as will be discussed later. Milstein 
et al. [31 ] recently studied the theoretical 
mechanical behaviour of  cubic crystals in uncon- 
strained [111] (i.e. body diagonal) uniaxial load- 
ing. They demonstrated that a general axisym- 
metric loading path, o f  necessity, passes succes- 
sively through three zeros where the lattice takes 
on the b c c, s c, and f c c configurations; based on 
that behaviour, a general p roof  was given that the 
unstressed s c lattice is always unstable (since it 
must occur in the central position, analogous to 
state b in Fig. 5). 

Elastic moduii are central in theories of  branch- 
ing and instability. Thus, at this point, it is useful 
to review briefly the subject of  elastic moduli o f  a 
crystal under load. 

2 .2  Elas t ic  m o d u l i  
Homogeneous pure strain of  a crystal is specifiable 
by any six parameters that define the geometry of  
the primitive or other fundamental cell. In con- 

1075 



formity with the standard notation in Lagrangian 
mechanics, an arbitrary set of generalized co-ordi- 
nates or parameters can be denoted as qr, 
r = 1 , . . . ,  6. Generalized conjugate variables are 
then defined by 

0W 
Pr - , r = 1 , . . . , 6 ,  (5) 

0qr 

where W is the internal energy of a (deformed) 
fundamental cell in the loaded crystal. A matrix of 
generalized elastic modull can be defined as the 
array of coefficients in the relations between 
differential increments of the conjugate sets of 
variables; 

O2W 
dPr = Crsdqs, Cr, - (6) 

Oqr~qs 

(r, s = 1 . . . .  ,6;  summation convention). The Crs 
are dependent both on the level of strain and on 
the choice of generalized co-ordinates. However, 
when these are the elements of some strain 
measure, all such matrices coincide in the reference 
configuration itself, if it happens to be unstressed. 
In that case the Cr~ are just conventional elastic 
moduli and the notation conforms with standard 
usage [12]. 

The three sets of geometrical variables qr prin- 
cipally favoured in the literature are (i) the com- 
ponents of the Green's tensor (which were always 
adopted by the Born school), (ii) the components 
of the stretch tensor (which were introduced into 
lattice mechanics by Macmillan and Kelly [35, 
36], and (iii) the Milstein or M variables (for 
r = 1, 2, 3, the qr are the edges of the unit cell, 
and for r = 4, 5, 6, the qr are the included angles). 
In principle, disregarding possible complexities of 
analysis, one could use the components of any 
other measure of strain as generalized co-ordinates. 
Hill [2] considered any tenor coaxial with the 
principal fibes and having principal values f(Xa), 
f(X2), f(X3), where Xa, X2, X3 are the principal 
stretches; f(X) can be any smooth monotone 
function such that f ( 1 ) =  0, f ' ( 1 ) =  1 (normal- 
izations that ensure coincidence with the classical 
infinitesimal strain when the deformation is first 
order). Simple examples of f(X) are X - 1, In X, 
(X 2 -  1)/2, the last of which generates the com- 
ponents of the Green's measure of strain. This 
topic is discussed in detail in [2] and [12]. 

Connections among various sets of moduli are 
given in [12] and [31] for particular paths of 
loading. For example, for an initially cubic crystal 
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subjected to a [100] uniaxial load It (per unit 
reference cross-section), the transformations 

C G among the Green, stretch, and M moduli ( r., 
CrSs, and C~, respectively) are 

cSl 2 a + l l / X l  ~--- ~k 1 C l l  

cS2 2 a = ~'2 C22 

cSa 2 G = X: C23 

C s = .~:z,-,G ,",2 ~ 44 

C585 = �88 1 "~ ~k3)2Cg ~-l , /~kl} 

(7) 

and C~ = C s for r ,s~<3 ) ~8 

wi thC~  = 4 G ) (8) X2 C44 and C M ~2 ~2 r~3 

where Xl is the axial stretch (i.e. in the [100] 
direction) and X2 = X3 is the transverse stretch (i.e. 
in the [010] and [0 01] directions); by definition 
the stretch of any embedded fibre is the ratio of 
its final length divided by its initial length. The 
above formulae clearly demonstrate the depen- 
dence of the elastic moduli upon choice of geo- 
metric variables qr, although for the "special case" 
Xl = X2 = X3 and ll = 0 (i.e. in the cubic reference 
state), C ~ = C srs = C~ = Cry, i.e. the "usual" 
elastic moduli. Under the prescribed loading, the 
crystal is tetragonal so the symmetries C22 = C33, 
C12 = C13, and Cs5 = C66 are maintained within 
any set of moduli (provided the principal axes are 
selected in a reasonable manner with regard to 
crystal symmetry). 

2.3. Invariant path branchings 
As noted by Hill and Milstein [12], "Branching of 
a primary path of deformation under a prescribed 
loading program, is well known to be closely 
associated with loss or exchange of s tabi l i ty . . .  
branching i s . . .  not coordinate invariant in general, 
when the criterion for its inception is stationarity 
of the conjugate forces during some virtual incre- 
ment of deformation. On some paths, however, 
there are exceptional bifurcations that are substan- 
tially coordinate invariant on this criterion". Hill 
and Milstein [12] identified one such co-ordinate 
invariant bifurcation and examined it in detail. In 
view of the possible role of such bifurcations in 
any objective concept of ideal strength, special 
consideration is given to this topic here. 



Consider the [10 0] loading path, as discussed 
above. Along this path, at the point at which 
C22 = C23, there is a special "co-ordinate invariant" 
bifurcation. The bifurcation is co-ordinate invariant 
in the sense that it occurs at the same point on the 
primary path, irrespective of the choice of geo- 
metric variables or co-ordinates qr used in specify- 
ing the strain and elastic moduli (assuming a 
"reasonable" choice with regard to lattice sym- 
metry) [12]. When this state is reached, a bifur- 
cation from the primary equilibrium (but not 
necessarily stable) loading path (on which the 
lattice possesses tetragonal symmetry) to a second- 
ary equilibrium path (on which the lattice acquires 
orthorhombic symmetry) is possible under a pro- 
gramme of uniaxial load. By contrast, in general, 
as soon as a crystal departs from the tetragonal 
configuration that it assumes on the primary path 
of [10 0] uniaxial loading, additional loads will be 
present and thus the equilibrium loading becomes 
other than [100] uniaxial. However, at the 
"invariant eigenstate" 6"22 = C23, the crystal can 
undergo a departure from tetragonal symmetry 
while maintaining the uniaxial [100] load. The 
nature of the bifurcation leading from the tetrag- 
onal to the orthorhombic path is as follows: all 
loads remain stationary (no loads act on the 1-2 or 
1-3 faces of the cell and the tmiaxial load normal 
to the 2-3 face remains dead [2]); the edges of the 
cell remain orthogonal; Xl remains stationary 
(6~k I = 0 ) ;  and X2 and X3 vary according to 
6X2 = -- 6X3 (6 indicates an incremental change). 

The invariant eigenstates C22 = C23, relative to 
the face centred tetragonal cell, were found to 
occur in the region indicated by state e in Fig. 5 
for lattice models of Ni [29] and Fe [33]; the 
6"22 = C23 states, relative to the body centred tet-, 
ragonal cell, occurred in the regions of f for Ni 
[29] and d for Fe [33]. (The state C22 = C23, 
relative to the f c t cell, occurs where C44 = 0,  
relative to the b c t cell, and vice versa; in [33] 
the computations were performed relative to the 
b c cell whereas in [29] the computations were 
based upon the f c cell.) 

The path branching from state f (in Fig. 5) 
under uniaxial loading was studied in detail by 
Milstein and Huang [30] for the lattice model of 
Ni; they showed this path to be identical to the 
path of [10 0] (i.e. face diagonal) uniaxial loading 
of the f c c crystal. Furthermore, at the branching 
point, the Poisson ratios along principal direc- 
tions normal to the load were of opposite algebraic 

sign and inf ini te  magnitude, and they remained of 
opposite sign along the full [1 1 0] path. Based 
upon the theoretical behaviour of the deformed 
crystal, Milstein and Huang [3] formulated the 
reasonably general hypothesis that, in [1 1 0] load- 
ing of an f c c crystal, the Poisson ratio in the 
[1 TO] direction would be negative. The generality 
of this phenomenon was supported by an examin- 
ation of the relevant Poisson ratios of a variety of 
f c c  crystals, as computed from experimental 
values of elastic moduli C ~ of the unstressed 
crystals. This is shown in Table I; references for 
the C ~ data are given in [3]. It is important to 
note that, although the path-dependent compu- 
tations were carried out within the framework of a 
particular lattice model, the qualitative theoretical 
behaviour apparently has fairly general applicabil- 
ity, as evidenced by the experimentally based 
results of Table I. 

Fig. 6 shows the load and energy for the lattice 
model of Ni in [10 0] and [1 1 0] loading, as com- 
puted by Milstein and Huang [30]. In state A, the 
crystal is unstressed f c  c; along p a t h . . .  ABCD, 
the crystal is in uniaxial load along a [1 1 0] direc- 
tion (with respect to the axes of the face centred 
cell) and the symmetry of the crystal is ortho- 
rhombic (i.e. under [1 1 0] loading of an initially 
f c c crystal, a body centred orthorhombic cell can 
be identified). In state G, the crystal is also 
unstressed f c  c (same as at A, but oriented differ- 
ently); along p a t h . . .  FGHDIJ . . . .  the crystal is 
in uniaxial load along a [100] direction (either 
with respect to the face centred or body centred 
cell axes) and the symmetry of the crystal is tet- 
ragonal. The invariant path branching at C22 = C23 
(relative to the b c cell) occurs at state D; the 
nature of the bifurcation is reviewed briefly, above, 
and is presented in great detail (including compu- 
tations of the path-dependent elastic moduli) in 
[30]. 

The existence of the path branching discussed 
above evidently also affects the value of the theor- 
etical maximum stress in [1 1 0] loading. For 
example, in unconstrained [1 0 0], [1 1 0], and 
[1 1 1] uniaxial loading, respectively, the same 
(initially) f c c crystal exhibits maximum theoreti- 
cal values of stress of about 2.6, 0.9, and 2.6 (in 
1011dyncm -2) at axial stretches of about 1.25, 
1.1, and 1.17 [29-31]. One might think, intuit- 
ively, that loading normal to a closer packed 
crystallographic plane (e.g. the [1 1 1] case) would 
yield a lower maximum theoretical tensile stress at 
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TAB L E I Elastic constants C~ (in 10 ~2 dyn cm -2) and Poisson's ratios v~ i 0 and Vo o 1 (as calculated 
from the C/)) for fcc crystals (From Milstein and Huang [3]) 

Crystal Temperature C~ C~ C404 Vl i 0 VO 0 1 

(K) 

Pd 0 2.341 1.761 0.712 0.010 0.745 
50 2.336 1.768 0.707 0.005 0.753 

100 2.319 1.768 0.701 -- 0.004 0.765 
150 2.291 1.753 0.702 -- 0.015 0.777 
200 2.270 1.743 0.706 -- 0.028 0.789 
250 2.262 1.744 0.711 -- 0.038 0.801 
300 2.271 1. 761 0.717 -- 0.049 0.813 

Th 0 0.778 0.482 0.513 -- 0.215 0.753 
300 0.753 0.489 0.478 -- 0.223 0. 794 

Cu 0 1.762 1.249 0.818 -- 0.138 0.806 
300 1.6 84 1.214 01754 -- 0.136 0.819 

Ag 0 1.315 0.973 0.511 -- 0.093 0.809 
300 1.240 0. 937 0.461 -- 0.096 0. 828 

Au 0 2.016 1.697 0.454 -- 0.029 0. 867 
300 1.923 1.631 0.420 -- 0.032 0.876 

A1 0 1.143 0.619 0.316 0.267 0.397 
300 1.068 0.607 0.282 0.272 0.414 

Pb 0 0.555 0.454 0.194 -- 0.186 0.970 
300 0.495 0.423 0.149 -- 0.209 1.033 

Ni 0 2.612 1.508 1.317 -- 0.051 0.607 
300 2.508 1.500 1.235 -- 0.055 0.631 

Ne 4.7 0.0169 0.0097 0.0100 -- 0.13 0.65 
24.3 0.01175 0.0074 0.00595 -- 0.095 0.69 

Ar 4 0.0411 0.0190 0.0210 0.006 0.459 
4.2 0.0367 0.0174 0.0234 -- 0.11 0.526 

82.3 0.0238 0.0156 0.0112 -- 0.083 0.710 

Kr 0 0.0506 0.0287 0.0273 -- 0.078 0.611 

Xe 151 0.0303 0.0190 0.0156 -- 0.10 0.69 

a smaller value of axial stretch, since the closer the 

atomic packing within the plane, the greater the 
distance between successive planes. Comparison 

between the [1 0 0] and [1 1 1] cases tends to sup- 
port such reasoning (although the maximum 
theorectical stresses are almost the same). The 
[1 1 0] case is clearly contrary to such " intui t ion",  
since the (1 1 0) planes are less closely packed than 
either the (100 )  or (111)  planes; however, the 
anomalously low values of maximum [1 1 0] stress 
and corresponding stretch can be understood as a 
consequence of the (evidently) inherent branching 

of the [1 1 0] path from the [10 0] path, as shown 

in Fig. 6 and discussed above. 
Computations have recently been carried out 

[40, 41] for the uniaxial loading paths branching 
from states d and e in Fig. 5, the latter of which 

corresponds with state F in Fig. 6. 
A possible interesting connection between the 
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above results and experimental  investigations of 

martensitic transformations might be mentioned. 
Gunton and Saunders [37] have associated the 

martensitic transformation (in indium and indium 
thallium alloys), from an f c c phase to a tetragonal 
phase, with a negative instability of the Poisson's 
ratio vl ~o; i.e. vl ro is negative in algebraic sign 

and as the transformation is approached, the mag- 
nitude of this negative quanti ty increases. In 

Milstein and Huang's computations, the stress-free 
tetragonal state was found along the equilibrium 
[1 1 0] uniaxial loading path at Xl ~ 1.170 (fairly 
close to the invariant C22 = C23 state). However, in 
this case, the tetragonal structure was mechanically 
unstable. 

3. Crystal stability under load 
3.1. Relativity of the Born criteria 
The first attempts to calculate the theoretical 
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Figure 6 Energy per unit bc cell W and applied force F 1 acting on the face of the cell along two branches of the path of 
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response of  a crystal to loading and to assess stabil- 
ity under load were carried out by Born and his 
co-workers [19-24] .  In [19], Born presented the 
general principles that guided the work of  his 
group. According to Born, any crystal capable o f  
homogeneous deformation may be treated as a 
conservative dynamical system with six degrees o f  
freedom; stability, in the ordinary Lagrangian 
sense was then to be assessed along conventional 
lines. The matrix of  elastic moduli Cr, was to be 
examined for positive definiteness at each stage o f  
loading, and the condition o f  passage from positive 
definite to semidefinite was to be taken as a "fail- 
ure criterion" in assessing the ideal or theoretical 
strength o f  crystals. The condition that the above 
mentioned matrix be positive definite (popularly 
called the "Born stability criterion") is equivalent 
to the condition that the internal energy function 
W be locally strictly convex in its arguments (or 
that the Hessian matrix of  W be positive definite) 
[12]�9 

This criterion has been widely used in the 
literature in computations of  theoretical crystal 
strengths as well as in applications to phase stabil- 
ity under hydrostatic pressure. However, as pointed 

out by Hill [2], the Born criterion is not co-ordi- 
nate4ndependent. That is, for a crystal under load, 
the positive definiteness of  the Hessian form 
Crs6qr6qs (r, s = 1 ,2  . . . .  , 6 ;  summation conven- 
tion) is not independent of  the choice o f  geometric 
variables qr used in defining the strain�9 In addition 
(although not mentioned by Born), consistency of  
this notion of  stability with the classical stability 
criterion requires a special environment in which 
the  loads can be varied so as to "follow" the 
material during any disturbances and keep fixed 
the values of  the conjugate forces, ~W/~qr, for the 
particular choice o f  generalized co-ordinates; these 
forces may consequently become different in kind 
from those in the configuration o f  equilibrium 
whose stability is under test. These matters are 
discussed in detail by Hill [2], Hill and Milstein 
[12, 15, 31], and Parry [38]. In practice, the Born 
school automatically took qr, r = 1 . . . .  , 6 ,  to be 
cartesian components of  the Green measure of  
strain relative to the urdoaded state, and there was 
no attempt to match the analysis to a practicable 
physical situation; the same can be said o f  all other 
choices in the literature. 

The following quotation is taken directly from 
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Born [19] (Born's original notation is maintained, 
although the connection with notation used here 
should be clear): "If  al, a2, a3 are the vectors 
describing the cell we have to take as the molar 
parameters the six scalar products at.as =ars 
(r, s = 1, 2, 3) . . .  The generalized forces corres- 
ponding to the molar parameters ars are the stress 
components Ars=--~A/~ars (1.5) which are 
determined by the external conditions (for 
instance, for a hydrostatic pressure All =A22 = 
A3a =P ,  A23 =A31 =A12 = 0). By solving these 
equations we find the equilibrium values of the ars 

,(for instance, for a cubic cell a H =  a2~ = a33 = a z, 
a23 = aal = a~2 = 0). Not every solution is stable, 
but only those for which the quadratic terms in 
the expansion of A, with respect to small alter- 
ations ~ars of the ars from their equilibrium values 
o ars, are positive definite. These terms have the 

form 
1 

A --Ao = ~ ~ Ars, p~(T)Sars~apa, 

pa (1.6) 

Ars'pa ~ aarsaapa]o 

� 9  If we now go to the limit of vanishing tempera- 
ture, the free energy A becomes identical with the 
static potential energy U. But the stability con- 
ditions remain valid even in this limiting case 
where the thermodynamic system degenerates into 
a mechanical one. We must infer that the macro- 
scopic stability of the lattice is determined by the 
positive definite character of the quadratic form 
(1.6) (where A is now replaced by U) of six vari- 
ables only, the variations ~ars of the cell param- 
eters, " 

Born concluded [19] by stating: " . . .  the cal- 
culation of the strength of crystals should be 
attacked by the method developed in this paper. 
This work will be carried out by my collaborators 
and pupils". In [21], Born and FOrth directly 
applied the Born stability criterion, as quoted 
above, to a crystal subjected to a particular mode 
of loading, i.e. [100] uniaxial. In [24], Forth (as 
communicated by Born) employed the same criter- 
ion in a discussion of the stability of cubic crystals 
under hydrostatic pressure, i.e. "The stability con- 
dition for a cubic lattice under uniform stress in 
the direction of one of the axes (Born and Ftirth, 
1940) can easily be transformed into the stability 
conditions for a uniform pressure p in all direc- 
tions. We have only to assume that the atomic dis- 
tances are equal tbr all three axes, that is, the c o n -  
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stant c introduced in (Born and Ftirth, 1940) is 
equal to b, and . . .  replace the equilibrium con- 
ditions (12) of that paper by the conditions F~ 
b, b)= p/2a 2 (i = 1, 2, 3) where a is the lattice 
constant for zero pressure". 

In discussing this view of crystal stability, Hill 
and Milstein [12] wrote: " . . .  it is in the detail of 
this theory that different writers have in practice 
diverged by virtue of choosing different sets of 
generalized coordinates. This is important because, 
in a crystal under load, convexity of the internal- 
energy function is not coordinate invariant . . . .  
Consequential divergences in estimates of strength 
previously escaped notice since atomic bonds were 
at the same time differently modeled by the respec- 
tive wr i te r s . . . " .  Hill and Milstein introduced the 
terms M strength, G strength, and S strength to 
indicate the ranges of deformation over which the 
respective Hessian forms Crs6qrgqs remain positive 
definite (for M, G, and S variables). They then 
illustrated qualitative divergences, with the aid of 
some general comparison theorems that they 
developed. For example, in the pioneering investi- 
gation by Born and Fiirth [21], an initially face 
centred cubic lattice was loaded uniaxially in a 
cubic direction (ql :~ q2 = q3 and the cell edges 
remain orthogonal; the qi are "adjusted" so that 
the loading is uniaxial). A Lennard-Jones model 
was adopted and the G strengths were computed 
for both tension and compression. In neither case 
was the critical variation (causing the semi-deFinite 
Hessian to vanish) described explicitly; it may be 
inferred that in tension it would be 6hl = 0, ~X2 = 

6k3 ~ 0, coaxial with the basis, while in com- 
pression it would be the actual 6X~i at the algebraic 
minimum of the Green's conjugate stress lJXl. 
With the aid of the comparison theorems, Hill and 
Milstein [12] concluded that, for Born and Forth's 
crystal, in tension the G strength, M strength, and 
S strength are all equal, but in compression the G 
strength is the greatest. More recently, Macmillan 
and Kelly [35, 36] computed the S strengths of 
sodium chloride (Born-Mayer model) and argon 
(Lennard-Jones model). The reference basis and 
configuration are the cubic axes of the experiment. 
ally observed (and theoretically stable) structures 
at zero stress and temperature. Three paths of 
deformation are followed: (i)uniaxial extension 
with Xl > 1, X2 = Xa = 1; (ii) uniaxial extension 
with ll 2> 0, /2 = 13 = 0; 0ii) plane dilatation with 
X~ = 1, X2 = X3 2> 1. All three loads remain tensile 
along the path segments (ii) and (iii). With the aid 



of their comparison theorems, Hill and Milstein 
[12] were able to demonstrate that the critical 
variations in (i), (ii), and (iii) for sodium chloride 
and in (iii) for argon were such that "the G strength 
is certainly less than the S strength", but they 
were unable to otherwise sharpen the comparison. 
For argon, the critical variation for (i) was not 
reported, while for (ii), the critical variation was 
such that comparisons among the G, M, and S 
strengths could not "be sharpened". 

Other qualitative examples can be found in 
[12]. However, at the time of their 1977 paper 
[12], Hill and Milstein noted that "Whether con- 
vexity of the energy has a strong or a weak depen- 
dence on any reasonable choices of the geometric 
variables remains to be investigated . . . " .  Since 
then, detailed computations of the domains of 
Born stability have been carried out for cubic 
crystals subjected to [100] [42], [111] [31] and 
hydrostatic [13-15] loading, for the cases of G, S, 
and M variables. For the unlaxial loadings, the 
ranges of Born stability were found to be relatively 
insensitive to choice of strain variables (at least for 
the particular choices employed). However, inter- 
esting and significant qualitative and quantitative 
divergences were found for the case of hydrostatic 
loading, as is discussed in the following section. 

3.2. Hydrostatic loading 
The classical Lagrange-Dirichlet criterion for elas- 
tic stability, when applied to a cubic crystal under 
a hydrostatic pressure P that does not vary during 
any departure from a considered configuration of 
equilibrium, gives 

K(P)>0,  /~(P)>0, tJ ' (P)>0, (9) 

as shown briefly in [12]. Here K is the bulk mod- 
ulus, while/~ and/a' are the usual shear moduli in 
the relation between the cubic-axes components of 
the Cauchy stress increment 6crij and the rotation- 
less strain increment 6eij (reckoned relative to the 
current configuration under P). A fully rigorous 
derivation of Conditions 9 via the modern theory 
of  bifurcation for elastic continua is presented in 
[15]. The treatment and subsequent stability 
criterion, Condition 9, is classical in that (i) the 
loading environment is fully specified, to sufficient 
order and in both its active and passive modes, and 
(ii) the potential energy of the system as a whole is 
examined in all the nearby, possibly inhomogene- 
ous, configurations allowed by the kinematic con- 
straints, if any. This criterion is therefore dis- 

tinguished from the "notional" criterion of 
Born, as discussed in the prior section. 

In an extensive three part series of papers, 
Milstein and Hill [13-15] reported computations 
of the bulk and shear moduli of the entire Morse- 
model family of fcc, bcc, and sc monatomic crys- 
tals under arbitrary fluid pressure. The compu- 
tations were extended to dilatations, up to magni- 
tudes where the lattice cohesion would in practice 
be lost. (It is well known that states of pure hydro- 
static tension can be approached locally near 
cracks and other stress-raisers. Since controlled 
experimentation with this type of loading is 
fraught with difficulties, a special significance 
attaches to the theoretical moduli.) The stable 
range of each lattice as well as the potential bifur- 
cations at the range limits were presented and dis- 
cussed in terms of the role of the particular lattice 
structure and the effective range of the inter- 
atomic potential function as specified by the 
parameter t3 - e aro (see Equation 3); larger ~ means 
shorter range and steeper functions ~b (see Fig. 2 in 
[13]). 

The fc c lattices were found to be stable in c o r n -  
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Figure 7 Regions of notional stability according to the 
Born criterion, Conditions 10, relative to the G, M, and S 
variables (indicated as G, M, and S stable, respectively) 
and stability in a hydrostatic environment (indicated as 
"EXACT") for the Morse family of monatomic face 
centred cubic crystals [ 15 ]. 
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Figure 8 Regions of notional stability according to the 
Born criterion, Conditions 10, relative to the G, M, and S 
variables (indicated as G, M, and S stable, respectively) 
and stability in a hydrostatic environment (indicated as 
"EXACT") for the Morse family of monatomic body 
centred cubic crystals [ 15 ]. 

pression and in tension up to an all round stretch 
X = A, ,  at which point the bulk modulus vanishes; 
A K is a monotonically decreasing function of log/3. 
The bcc lattices are stable for X < AcR, where the 
bulk modulus or the shear modulus /J vanishes 
(depending upon the value of log/3) at X = AcR. 
For very large values of log/3, a second range of 
bcc stability is located in a region of hydrostatic 
expansion. The sc crystals are stable only in a 
range of hydrostatic tension and only for relatively 
short-range interatomic interactions (large log/3); 
Milstein and Hill's study apparently is the first in 
which a theoretical range of stability of sc crystals 
has been revealed. 

In contrast with the classical criterion for cubic 
crystals under hydrostatic loading, Conditions 9, 
the Born criterion leads to 

Cn+2C12>0, Cli-Ca2>O, C~>O. 
(10) 

At zero load Conditions 9 and 10 are naturally 
equivalent, but when P ~ 0, they predict different 
domains of stability; moreover, Conditions 10 are 
thoroughly "relative" in the sense that they are 
dependent on the choice of generalized co-ordi. 
nates, since, as noted in the previous section, the 
convexity of W is not co-ordinate-invariant under 
load [2]. Furthermore, the Born criterion, Con- 
ditions 10, evidently is not equivalent to the 
classical criterion, Conditions 9, for any choice of 
strain variables qr for a cubic crystal under con- 
stant hydrostatic loading. (It is emphasized, in 
this discussion, that, in general, the bulk and shear 
moduli fo Conditions 9, as well as the elastic 

'moduli Crs-  02~g/OqrOqs of Conditions 10, are 
the moduli appropriate to the "strained lattice" in 
its current state of hydrostatic loading. ) 

Milstein and Hill [ 15] also examined the conse- 
quences of attempting to assess stability of the 
Morse function fcc, bcc, and sc cubic crystals 
under hydrostatic loading via the "simplistic 
notion" expressed in Conditions 10 for the casesin 
which the elastic constants are evaluated relative 
to the G, M and S variables. The respective regions 
of convexity (i.e. the regions over which the Born 
criterion (Conditions 10) is satisfied for the respec- 
tive choices of strain variables) are called the 
regions of G, M, and S stability. In order to dis- 
tinguish these regions from those of classical stab- 

i i 1 , i i i i i t ] L I O  
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Figure 9 Regions of notional stability 
according to the Born criterion, Conditions 
10, relative to the G, M, and S variables 
(indicated as G, M, and S stable, respec- 
tivdy) and stability in a hydrostatic 
environment (indicated as "EXACT") for 
the Morse family of monatomic simple 
cubic crystals [ 15]. 
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Figure 10 Ranges of stability of the three cubic lattices 
for the Morse model family of fcc, bcc, and sc mon- 
atomic crystals under constant hydrostatic loading [ 15 ]. 
(The region in the upper "insert" indicating stability of 
f c c  and b c c  below A K and above A~zB(R) is also sc-  
stable). 

i l i ty in a hydros ta t ic  env i ronment  according to 

Condi t ions  9, the  t e rmino logy  " e x a c t "  is appl ied to 

the lat ter .  Here it  might  be emphasized that  the  

popular  be l ie f  apparent ly  is that  the Born cr i ter ion 

is a useful  and correct  way  to assess elastic s tabih  

i ty  under  hydros ta t ic  pressure. However ,  the 

results o f  Milstein and Hill, as summar ized  in Figs. 

7 to 9, clearly demons t ra te  that  significant quali- 

tat ive discrepancies occur  when  this cr i ter ion is 

employed .  The  current  vo lume per a t o m  is ?$V, 

where V is the  vo lume  per a tom when  P = 0 and 

is the all-round stretch.  Fo r  each lat t ice the range 

o f  classical (as well  as Born) stabil i ty depends  

un ique ly  on the value o f  log /3 [ 1 3 - 1 5 ] .  The  

computa t ions  were  made  wi th in  the f ramework  o f  

a crystal  m o d e l  that  is bo th  mathemat ica l ly  tract-  

able and suff icient ly realistic for the in tended  pur- 

pose; values o f  log/3, calculated f rom exper imenta l  

data,  vary f rom about  3 to 8 [26, 28]. 

Final ly,  the classical ranges o f  stabili ty for all 

three la t t ices  are summar ized  in Fig. 10. 
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